
Join Count and Autocorrelation Analyses in R
Michael L. Treglia

Material for Assignment 6 of Landscape Analysis and Modeling, Spring 2016

This document, with active hyperlinks, is available online at:http://mltconsecol.github.io/TU_ LandscapeAnal-
ysis_Documents/Assignments_web/Assignment06_Autocorrelation.html

Due Date: Tuesday, 8 March 2016
PLEASE WRITE YOUR NAME ON YOUR ANSWER DOCUMENT

Questions (Worth 1 point each, for a total of 10 points)

1) Convert the point data to rasters of presence/absence for Acer rubrum, Pinus strobus, and Prunus
serotina as explained below (in the section ‘Creating Cells of Presence/Absence’), and plot them. Based
on the plots, for which species do you expect to find significant aggregation? For which species do you
expect to find significant dispersion? Justify your answers.

2) Calculate the join count statistics for each species using the ‘rook’ type of joins. Which are actually
significantly associated and significantly dissasssociated? (Remember, the alternative hypothesis ‘greater’
tests for significant association (the number of like joins is significantly greater than expected by random
chance); the alternative hypothesis ‘less’ tests for the dissociation.)

3) Do the same analyses as in Question 2, but with the queen style setup. Do you see differences between
these results and the results for Question 2 for any of the three species? If so how might you interpret
it? (For example, does significance in one case perhaps indicate a more uniform distribution of an
individual species?)

4) Create and show plots for Moran’s I and Geary’s c for Acer rubrum. Does this species show significant
autocorrelation? If so, at what distances, and positive or negative? To speed processing, I recommend
using a sample of only ~300 points.

5) Create and show plots for Moran’s I and Geary’s c for Pinus strobus. Does this species show significant
autocorrelation? If so, at what distances?

6) There will likely be significant autocorrelation in at least one of these datasets (if not, just think about
this hypothetically) - given autocorrelation at specific scales and the assumption of independent samples
for statistical tests, how could you adjust your sampling scheme to avoid problems with autocorrelation
and ensure measurements are independent??

7) Calculate Local Moran’s I for a raster of the number of trees for Acer rubrum. Look at plots of those
results and plots of the original data - are there distinct ‘hotspots’ of tree of this species? Circle them
on your answer sheet (you can copy/paste the a result figure into Word and use drawing tools there to
simply draw a circle around them). Hotspots are local areas that have higher number of trees within a
cluster of a few pixels, and are indicated with higher values for the local indices.

8) Do the same as for Question 7, but this time for Pinus strobus.

9) Explain a potential application of join count analyses in one of your own datasets. If you do not have a
relevant dataset, feel free to think of a hypothetical scenario you might be interested in.

10) Autocorrelation poses a problem in statistical analyses because close samples may not be independent of
one another, violating assumptions of statistical tests. Explain two potential causes of autocorrelation.
It might help to provide potential reasons for autocorrelation in a sample dataset (the tree dataset we
use here would be fine).

1

http://mltconsecol.github.io/TU_%20LandscapeAnalysis_Documents/Assignments_web/Assignment06_Autocorrelation.html
http://mltconsecol.github.io/TU_%20LandscapeAnalysis_Documents/Assignments_web/Assignment06_Autocorrelation.html

Introduction

Join count and autocorrelation statistics are valuable in understanding spatial dependencies among sample
units. This lab focuses on using R to calculate join count statistics, Moran’s I, Geary’s c, and some local
autocorrelation statistics.

We will be working with the multi-year tree census dataset from Harvard Forest, the Lyford Mapped Tree
Plot Data, available at http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf032, which we
have used in previous analyses.

Though the dataset is a complete census, it is rare to have such a dataset due to logistical and financial
constraints (e.g., funding, person-power, time, etc.). For the join count analyses, we will focus on all of the
data (restricted to a portion of the study area), but we will only consider presence/absence within grid cells.
For autocorrelation analyses, we will use all data in an area, but the same analyses could be done with a
sample of the data, collected in systematic or random sampling schemes.

Though we will use R, calling on packages that aid in processing and analyzing spatial data, PASSaGE (used
in Lab 4) also supports some of these analyses, and students are encouraged to explore PASSaGE as an
alternative if they are curious.

Necessary Packages

The packages we will use in this lab are ‘spdep’, ‘raster’, and ‘pgirmess’. See previous labs for details on how
to install and load packages (the respective commands are ‘install.packages’ and ‘library’)

Importing and Sampling the Data

You can download the dataset, store it locally and load it into R, as you did in Lab 3, or as in Lab 4, you
can import this dataset directly from the web using the code below. We’ll import the data and assign it to
‘HTrees’.

#use 'setwd([File Path])' to set your working directory.
HTrees <- read.csv("http://harvardforest.fas.harvard.edu/data/p03/hf032/hf032-01-tree.csv")

For the Join Count analysis we will focus analyses on Acer rubrum (red maple) and Prunus serotina (black
cherry); for the autocorrelation metrics, we will focus on A. rubrum, P. serotina and Pinus strobus (white
pine). For both types of analyses, we will conduct the analyses separately for each species, so we need to
subset the data appropriately. For all analyses, we will also need the positions of the trees (variables ‘xsite’
and ‘ysite’), and our focal variable for autocorrelation analyses will be the diameter at breast height in 1991,
so we want to exclude observations with no data for that variable.

Create subset of data for Acer rubrum
acru <- subset(HTrees, species == "ACRU" & dbh91 != "NA", select = c("xsite",

"ysite", "dbh91"))
Create subset of data for Prunus serotina
prse <- subset(HTrees, species == "PRSE" & dbh91 != "NA", select = c("xsite",

"ysite", "dbh91"))
Create subset of data for Pinus strobus
pist <- subset(HTrees, species == "PIST" & dbh91 != "NA", select = c("xsite",

"ysite", "dbh91"))

2

http://harvardforest.fas.harvard.edu/
http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf032
http://www.passagesoftware.net/
../Assignments_web/Assignment04_QuadratVarianceAnalysis.html

Creating Cells of Presence/Absence (For Join Count Analysis)

As discussed in lecture, join count analysis is used to detect aggregation of like categories among sample units.
Sample units can vary, and be in the form of polygons, points, or a lattice of grid cells. For this example, we
will focus on a grid, created for the focal area of the Harvard Forest tree dataset. There are a few different
ways to do this, but we’ll create a raster layer for a core area in the study plots, and assign pixels 1 or 0 for
presence or absence of individual species, respectively.

First, we’ll load the required packages, and convert the points to SpatialPointsDataFrames.

Load required packages
library(raster) #the 'sp' packages gets loaded with these, so no need to load it separately

Loading required package: sp

library(spdep)

Loading required package: Matrix

library(pgirmess)

Convert tree data to SpatialPointsDataFrame, both for entire dataset, and
for individual species
HTrees.spdf <- HTrees
coordinates(HTrees.spdf) <- c("xsite", "ysite")

pist.spdf <- pist
coordinates(pist.spdf) <- c("xsite", "ysite")

acru.spdf <- acru
coordinates(acru.spdf) <- c("xsite", "ysite")

prse.spdf <- prse
coordinates(prse.spdf) <- c("xsite", "ysite")

Now you can plot these datasets using the ‘plot’ command as you have done in previous labs; to view the x
and y axes, use the argument ‘axes=TRUE’. Looking at the full dataset, you can identify the extent of the
study area. For these analyses, we will simply select a rectangular area that includes areas only areas that
were sampled for trees, bounded by the coordinates indicated below. The function we will use to define the
extent is ‘extent’. Then, we will create a blank raster with 20 foot grid cells (20 cells in the x-dimension, and
25 cells in the y dimension).

#Define the extent for the join count analyses
jc.extent <- extent(-300,100,-700,-200)
#set up a blank raster
r <- raster(nrows=25, ncols=20, ext=jc.extent)

Next, we will rasterize the points, to the same grain size and extent as the blank raster we just established.
The command for this is ‘rasterize’; we will use the argument ‘field=1’, which indicates that if points are
present in a grid cell, the cell will take a value of 1. If the cell contains no cells, it will remain a NoData cell,
thus the subsequent line sets all remaining NoData cells to 0 (indicating absence).

3

acru.rast <- rasterize(acru.spdf, r, field = 1)
acru.rast[is.na(acru.rast)] <- 0

You can plot the result
plot(acru.rast)
You can plot the points on top of the raster to verify it is correct
Remember - we only mae the raster for a subset of the data, so there will
be points in a larger area than the raster covers
plot(acru.spdf, add = TRUE)

−400 −200 0 200

−
70

0
−

60
0

−
50

0
−

40
0

−
30

0
−

20
0

0.0

0.2

0.4

0.6

0.8

1.0

Follow the example above and do the same for the other species (plotting is up to you)

Setting Up and Running Join Count Analysis

For we need to define the neighbors - this is the connectivity matrix that was discussed in lecture.

Generate neighbors list - the function is 'cell2nb' and the arguments are
the number of rows and colums in your grid; you can simply get those
characteristics from your any of your rasters using 'nrow' and 'ncol'
commands, nested in the cell2nb function (as ilustrated below). Note, the
default for this is 'rook', but you can change the join counts to 'queen'
by adding the argument 'type='queen'.
nb <- cell2nb(nrow = nrow(acru.rast), ncol = ncol(acru.rast))
To calculate neighbors for queen configuration
nb.queen <- cell2nb(nrow = nrow(acru.rast), ncol = ncol(acru.rast), type = "queen")

Convert the neighbors list to a 'weights' list; again, this will be the
same for all species we are analyzing. You an follow the example below
using 'style='B' (as a Binary weights matrix). Again, calculate this for
the queen setup as well as the default (rook) setup.
lwb <- nb2listw(nb, style = "B")
lwb.queen <- nb2listw(nb.queen, style = "B")

4

Now, everything is set for the analyses. You have a raster,which has the values of presence/absence for species
in the grid cells, and the weights information (as object ‘lwb’). The actual values for the pixels are in ‘slots’
of the rasters and as you can see by looking at the structure of these datasets. To view the pixel values, you
can all the ‘data’ slot. For example

acru.rast@data@values

Finally, the functions to run the join count test are ‘joincount.test’ and ‘joincount.mc’. The first option
calculates a p-value for the test using a z-statistic, assuming a normal distribution, whereas the second is
for a permutation test, based on random permutations of the dataset. Given that this test is designed for
categorical data, it expects the presence/absence data as a factor, which can be done within the functions.
Another thing to note is that you can select the alternative hypothesis (the null hypothesis being that the
joins among presence and absence cells are random). The default is ‘greater’, which is testing the alternative
hypothesis that the number of like joins is more than expected by random chance. changing this to ‘less’
would switch the hypothesis being tested to represent that the number of like joins is fewer than expected by
random chance (indiating higher levels of dispersion). Again, the choice of rook or queen-based setups can be
established earlier, using the cells2nb function. An important thing to remember is that the expected values
are based on the proportions of presence and absence cells in the actual data.

First, the regular join count test for Acer rubrum (Testing the hypothesis
of aggregation among like categories; add the argument 'alternative='less'
to reverse this)
joincount.test(as.factor(acru.rast@data@values), lwb, alternative = "greater")
Second, the permutation-based jon count test; similar to above, and you
can adjust the number of simulations with the 'nsim' argument
joincount.mc(as.factor(acru.rast@data@values), lwb, nsim = 999, alternative = "greater")

Can also compute these for the queen setup; for example, with the
permutation test:
joincount.mc(as.factor(acru.rast@data@values), lwb.queen, nsim = 999, alternative = "greater")

The join count statistics are calculated and presented for ‘0’ and for ‘1’ in this case, as those are the factor
levels of interest (where 1 is presence, 0 is absence). Because you are focused on

Analyzing Global Moran’s I and Geary’s C

As discussed in class, we frequently want to quantify autocorrelation for single variables across multiple
samples. For these exercises, we will focus on the variable ‘diameter at breast height’ for P. strobus and
A. rubrum from 1991 - each of which have enough individuals that we can likely calculate these statistics
reasonably well for a variety of lags (i.e., distance classes). These can be slow to compute for large sample
sizes in R; given that we have ~1800 observations of A. rubrum, we will run the analyses on a smaller, random
sample of only 300 points (without replacement) for that species:

Use the function 'sample' to get random sample of points; this is done on
a SpatialPointsDataFrame , but could also be run on a regular dataframe
acru.sample <- acru.spdf[sample(1:nrow(acru.spdf), 300, replace = FALSE),]
plot(acru.sample) #plot if you want to see waht the random sample of data
looks like

Moran’s I and Geary’s c can be calculated using the ‘spdep’ package, with lots of customizability. For
example, you could calculate these metrics for very specific distance classes, whereas some other packages set
the distance classes automatically. As with the calculating join count statistics however, it requires setting up

5

your own neighbor matrix, then we would need to figure out distance classes and . For this lab, we will use
the ‘pgirmess’ package, and the function ‘correlog’. This by default uses Sturge’s rule for setting the number
of distance classes, and equal-sized distance classes. You can switch between Moran’s I and Geary’s c using
the ‘method’ argument. Plotting the result will automatically indicate significant values as red dots; the
basic output shows upper limit of each distance class, the Moran or Geary coefficient,the p-value, and the
number of pairs of points in that distance class. Below is the code for Acer rubrum; you should do this for
Pinus strobus on your own.You do not need to do this for Prunus serotina as there are simply too few points.
If you look up the help for these functions, you will see it takes arguments from moran.test() and geary.test().
By default, these functions are testing for positive autocorrelation, but we can use the ‘alternative’ argument
to change that - you can use ‘two.sided’ to test for both positive and negative autocorrelation, ‘greater’(which
is the default) for positive autocorrelation, or “less” for negative autocorrelation.

acru.moran <- correlog(coordinates(acru.sample), acru.sample$dbh91, method = "Moran",
nbclass = NULL, alternative = "two.sided")

Can view the textual results by simply typing 'acru.moran'
plot(acru.moran) #plots the results

−
0.

05
0.

05
0.

15

Moran I statistic = f(distance classes)

distance classes

M
or

an
 I

st
at

is
tic

0 50 150 250 350 450 550 650 750

acru.geary <- correlog(coordinates(acru.sample), acru.sample$dbh91, method = "Geary",
alternative = "two.sided")

plot(acru.geary)

6

0.
8

0.
9

1.
0

1.
1

1.
2

Geary C statistic = f(distance classes)

distance classes

G
ea

ry
 C

 s
ta

tis
tic

0 50 150 250 350 450 550 650 750

Calculating Local Moran’s I statistics

As with the global autocorrelation statistics, a number of packages can be used to compute local autocorrelation
statistics. We will focus on looking for ‘hotspots’ of high densities of Acer rubrum and Pinus strobus in the
Harvard Forset Tree data using Local Moran’s I, calculated in the ‘raster’ package. This can also be done for
various types of spatial datasets using the ‘spdep’ package.

We will use the same general techniques to create rasterized datasets of the tree datasets as we did for
calculating Join Count Statistics, but instead of simply presence/absence, we will calculate the number of
trees per grid cell. We will replace the argument ‘field=1’ with a function, that calculate the ‘length’ of the
dataset (the number of values) within each raster pixel.

Note - we put [[1]] after the function to indicate that we only want the first layer - the function actually
calculates two layers - one for the ‘ID’ value from the Spatial Points Data Frame and one for the dbh91
values. Since these are simply counts of the number of points, both layers will look the same and we could
choose either one. If we did not use the ‘[[1]]’, and went to plot the result, you would see two rasters plotted.
This makes an important difference in some cases, for example if you are using ‘fun=mean’, which calcualtes
the average value of fields for all points within a pixel - you can explore and see what happens.

acru.rast.count <-rasterize(acru.spdf, r, fun=function(x,...)length(x))[[1]]

Now we can calcualte a local Moran’s I for the raster, and plot the results. The function for this in the
‘raster’ package is simply ‘MoranLocal’ - check out the options you can adjust; importantly, you can change
what surrounding pixels it uses for this calculation, thus you could calculate this using a ‘rook’ or ‘queen’
setup, as you could with the join count statistics. Here is the example for Acer rubrum:

plot(MoranLocal(acru.rast.count))

7

−400 −200 0 200

−
70

0
−

60
0

−
50

0
−

40
0

−
30

0
−

20
0

0
2
4
6
8
10

8

	Questions (Worth 1 point each, for a total of 10 points)
	Introduction
	Necessary Packages

	Importing and Sampling the Data
	Creating Cells of Presence/Absence (For Join Count Analysis)

	Setting Up and Running Join Count Analysis
	Analyzing Global Moran's I and Geary's C
	Calculating Local Moran's I statistics

