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Network analysis as a tool for quantifying the dynamics of metacoupled
systems: an example using global soybean trade
Danica Schaffer-Smith 1, Stephanie A. Tomscha 2, Karl J. Jarvis 3, Dorothy Y. Maguire 4,5, Michael L. Treglia 6,7 and Jianguo Liu 8

ABSTRACT. The metacoupling framework provides grounds for characterizing interactions within and between coupled human and
natural systems, yet few studies quantify the nuances of these systems. Network analysis is a powerful and flexible tool that has been
used to quantify social, economic, and ecological systems. Our objective was to evaluate the utility of network analysis for quantifying
metacoupled systems by assessing global soybean trade among 217 countries from 1986 to 2013. We identified and quantified sending
and receiving systems, subnetworks and flow pathways, changes over time and across scales, feedbacks, and associations between trade
and tropical deforestation. Although a total of 165 distinct cliques were identified within the network, a few key players were
disproportionately influential in the 2872 partnerships, including Brazil (37.5%), China (48.6%), and the USA (72.3%). Total network
density increased five-fold over the study period with an increasingly smaller set of countries heavily engaged in trade, posing
sustainability and food security concerns. We found evidence of a positive feedback where countries with established trade partnerships
were more likely to expand trade relationships over the study period. Trade patterns were not explained by regional or continental
geography, highlighting limitations of neighborhood analyses commonly used in ecology. We also found evidence of a link between
soybean trade and tropical deforestation; in pantropical countries participating in soybean trade, cumulative soybean exports for the
period 2000–2012 were strongly associated with remotely sensed estimates of forest loss by country (Rsq = 0.35 , p < 0.0001). We
demonstrated that network analyses can be used to quantitatively assess relationships between metacoupled social-ecological systems.
Increased data access and platforms for integrating diverse data sources using multidisciplinary tools will be key to pushing the
boundaries of quantitative metacoupled systems research.
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INTRODUCTION
The world is becoming increasingly connected, with human and
natural systems coupled over great distances producing localized
consequences. The telecoupling framework has established a
foundation for understanding the dynamics and consequences of
social-ecological interactions over distances (Liu et al. 2013),
along with well-defined terminology to conceptualize distinct
parts of these systems. Telecoupled systems are composed of
sending, receiving, and spillover systems, which may each have
unique causes, agents, and effects that must be considered. These
systems may be hierarchically structured, with interactions
spanning multiple scales, through connecting flows and
feedbacks. Furthermore, the framework has recently been
expanded to encompass metacoupling, which simultaneously
incorporates interactions within and between multiple spatially
proximate and distant coupled human and natural systems (Liu
2017). While interactions occurring entirely within a focal system
of interest are considered as intracoupling, intercoupling may
also exist between two or more systems through pericoupling
linking nearby systems, or telecoupling linking distant systems.
Despite conceptual advances in the field, techniques for
quantifying the dynamics of metacoupled systems are still in
development.  

Much of the telecoupling research to date has focused on
qualitatively identifying sending, receiving, and spillover systems
(Deines et al. 2016, Liu et al. 2016), and identifying potential
drivers, such as global trade of agricultural and forest products

(Liu et al. 2013), energy trade (Fang et al. 2016), sand trade (Torres
et al. 2017), water transfers (Yang et al. 2016), species migration
(Hulina et al. 2017), conservation (Carter et al. 2014), fisheries
(Carlson et al. 2017), and economic development (Yang et al.
2016). Application of the telecoupling framework has identified
key research gaps (e.g., Liu et al. 2016) and governance needs
(Hulina et al. 2017), and has also generated unexpected findings
and new hypotheses (e.g., Sun et al. 2018). However, even for well-
known examples of telecoupled systems, rarely have social and
ecological interactions and dynamics over time and space been
simultaneously considered using quantitative approaches.  

Global soybean trade was one of the first case studies
conceptualized as a telecoupled system with broad social and
ecological consequences (Fig. 1), yet previous research has
focused mainly on qualitative description (e.g., Nepstad et al.
2006) and soybean trade has not yet been considered as a
metacoupled system. Global land area for soybean production
doubled over the past three decades, while the land area for most
other crops has remained relatively constant (Reenberg and
Fenger 2011). Increasing global demand for soybeans and their
derivatives has been fueled by population growth, increased
wealth, and higher meat consumption (Gasparri et al. 2015).
Although China, where soybeans were domesticated thousands
of years ago, was historically the top soybean exporter (sending
system; Sun et al. 2015), the USA dramatically increased
production and overtook China as the dominant contemporary
sending system (Reenberg and Fenger 2011). Notable production
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Fig. 1. The soybean metacoupled system, including sending systems (yellow), receiving systems (green), and
spillover systems (blue), with arrows showing the connections that occur within and between systems.

increases then proceeded in Brazil and Argentina, displacing
previously forested landscapes, driven in part by government
subsidies, external investments in road infrastructure, and unclear
land tenure (Macedo et al. 2012). Brazil’s soybean exports recently
surpassed those of the USA, and its southern hemisphere
production can complement or compete with production in the
USA (spillover system; Liu et al. 2015a). Paradoxically, China has
emerged as the dominant importer (receiving system),
appropriating > 50% of global soybean exports and sourcing >
80% of the soybean it consumes from outside its borders in recent
years (Reenberg and Fenger 2011, Liu et al. 2015a, b). Soybean
trade patterns were quantified in a previous study (Kastner et al.
2014), yet, the authors suggested that results contradicted their
knowledge of the system, indicating an ongoing need for
appropriate methods to quantify the dynamics of the soybean
metacoupled system (SMS).  

Network analysis can be used to quantify functional connections
between distant systems and between neighboring systems, and
is well-suited to address a range of complexities possible in
metacoupled systems such as the SMS (Box 1; Urban and Keitt
2001, Barrat et al. 2008, Fortin et al. 2012). Flexible in disciplinary
application, network analysis has been vetted in a wide range of
contexts. Previous work has typically focused on the human
domain (Iapadre and Tajoli 2014, del Río-Chanona et al. 2017),
including social relationships (Fletcher et al. 2011, Mikusiński et
al. 2013, De Benedictis et al. 2014), international finance
(Contreras and Fagiolo 2014) and economic development
(Shutters and Muneepeerakul 2012), commodity supply chains
(Acemoglu et al. 2012, Mastrandrea et al. 2014, Possamai et al.
2015, Shen et al. 2015, Cai and Song 2016), transnational land
acquisitions (Seaquist et al. 2014), virtual water trade (Dalin et
al. 2011), transportation networks (Carvalho et al. 2012), human
migration (Davis et al. 2013), and the spread of toxins (Bui-

Klimke et al. 2014) and diseases (Lentz et al. 2016). Studies of
commodity trading have extensively employed network analysis
methods including input-output analysis (e.g., Roy and Hewings
2009, Acemoglu et al. 2012, Aldasoro and Angeloni 2013,
Contreras and Fagiolo 2014), open flow networks (e.g., Shen et
al. 2015), and the use of null network models (e.g., Mastrandrea
et al. 2014). Network analysis also shows promise for investigating
social-ecological associations (e.g., Bodin and Crona 2009,
Rathwell and Peterson 2012, Schiller et al. 2014). Although some
researchers have reported ecological effects of international trade
(e.g., DeFries et al. 2010, Lenzen et al. 2012, Moran and
Kanemoto 2017), network analyses of trade have not often
addressed effects on ecosystems, and have not been employed
using the metacoupling framework to consider dynamics of
feedbacks and spillover systems.  

Many aspects of the SMS remain undescribed, and some well-
studied linkages could be quantified in greater detail using
network analysis methods. An entire metacoupled system can be
represented as a network with a vast array of metrics available to
evaluate dynamics at multiple hierarchical levels from
subnetworks (intercoupled subsystems) connected by key flow
pathways, to the level of individual nodes, e.g., agents such as
individual countries or decision makers, operating within an
intracoupled system. A network analysis approach can be used
to delineate loosely or tightly connected metacoupled
communities that generate underlying structure within the
broader network, which may each have social-ecological
properties and implications that have yet to be considered for the
SMS. The shared attributes of nodes in these communities may
also reveal key drivers underlying the establishment and
maintenance of metacoupled systems. Networks can also be time-
ordered (Kempe et al. 2002, Blonder et al. 2012); assessment of
the relative strengths of complex connections among and within

https://www.ecologyandsociety.org/vol23/iss4/art3/


Ecology and Society 23(4): 3
https://www.ecologyandsociety.org/vol23/iss4/art3/

sending, receiving, and spillover systems over time may help to
shed light on some of the most poorly understood aspects of
metacoupled systems (Liu et al. 2013, Liu 2017).  

Long-term trends and feedbacks in the SMS, which may amplify
or dampen metacoupling effects, have not been thoroughly
studied. As in many other metacoupled systems, the limitations
of geographic distance for nutrient, material, and organism flows
across social and ecological networks (Fahrig 2003, Gonzalez
2009, Lee and Kwan 2011) have been overcome by faster
communication and transportation (Fletcher et al. 2011,
Mikusiński et al. 2013, Eakin et al. 2014), defying classic spatial
assumptions and posing challenges to understanding of complex
processes such as land use change (Friis et al. 2016). Legacies, or
the phenomenon in which historical patterns continue to explain
current conditions, may also be crucial to understanding
contemporary characteristics of metacoupled systems; in many
cases, current observations of landscape patterns have been linked
to human and natural disturbance history (Turner 2005). This
can be explored at the scale of an individual node or edge, for
example to determine whether attributes in one time step predict
conditions in the future. More complex feedbacks can also be
examined, such as the effect of flows between key communities
of interest on the attributes of sending, receiving, or spillover
system nodes of interest.  

Insights into multiscale effects in both spatial and temporal
dimensions are needed to develop a better understanding of the
SMS, and other metacoupled systems. Taking a broad view of a
system accounts for important drivers and effects from the local
to landscape scale (Turner et al. 1989, Wiens 1989) and even to
global scales (Cash et al. 2006). Subtle changes at one scale may
produce feedback effects that are amplified over time, and may
be experienced locally, in a nearby system, or within a spatially
distant system, and thus require a metacoupling perspective (Liu
2017). This scaling can be considered using network analysis
methods by analyzing dynamics between nodes using the finest
spatial grain available, e.g., municipalities, and also at the level of
aggregated countries and regions that may interact with one
another in metacoupled systems.  

Spillover systems, which may interact with sending and receiving
system dynamics, are perhaps the least well studied aspect of the
SMS and other metacoupled systems. Effects on, or of, spillover
systems may occur across hierarchical levels and across scales. For
example, previous studies of the SMS have considered the USA
post hoc as a spillover system affected by emerging soybean trade
markets (e.g., Liu et al. 2015b). As global demand for soybean
continues to rise (Gasparri et al. 2015), and policies are working
to prevent further degradation of the Amazon rain forest (Gibbs
et al. 2015), technology transfer may enable new production
frontiers in locations with appropriate soybean growing
conditions, such as South Africa (Sinclair et al. 2014, Gasparri et
al. 2015). Established sending countries may have to respond to
increased competition from these nascent sending systems by
diversifying their trade partnerships (Liu et al. 2015b).  

Linkages between the social and ecological dimensions of the
SMS have been proposed, but have not been thoroughly
quantified. In particular, the arc of deforestation in the Brazilian
Amazon has in large part been attributed to soybean trade
(Fearnside 2001, Reenberg and Fenger 2011, Lathuillière et al.

2014, Liu et al. 2015a), yet the relationship has not been quantified
within the metacoupling framework. Tropical forest loss has
consequences for local ecosystem services, e.g., water quality
degradation (Foley et al. 2005) and livelihoods (Vittor et al. 2006),
as well as global biodiversity (Gibson et al. 2011), and climate
regulation (Asner et al. 2010). Though deforestation in Brazil
declined substantially in the late 2000s because of policy changes
encouraging land intensification in the Amazon, this displaced
land conversion for soybean into the cerrado (Dou et al. 2018) to
meet demands from a growing consumer base (Macedo et al. 2012,
Rosa et al. 2012). Better understanding the causes of these effects
could aid in policy development, for example, to avoid simple
displacement of impacts to ever-expanding cultivation areas.  

Our objective is to evaluate the utility of network analysis for
quantifying social-ecological dynamics of the SMS in space and
time. Specifically, we demonstrate the application of selected
network analysis methods to address several key questions: (1)
What are the most important sending and receiving systems and
key flow pathways? (2) How have key sending and receiving
systems and flow pathways changed over time? (3) Have past trade
partnerships had a positive feedback on future trade
partnerships? (4) To what extent have cross-scale dynamics from
country to continental levels affected soybean trade patterns? (5)
What spillover effects have emerging soybean sending systems had
on the USA’s role as an established dominant sending system? (6)
To what extent have ecological impacts occurred in tropical
forests, e.g., deforestation, on account of soybean trade? This
work demonstrates a new application of network analysis to gain
novel insights into previously understudied aspects of the SMS,
and contributes to the growing body of literature showcasing the
value of network analyses for analyzing complex social-ecological
systems (Schiller et al. 2014).

METHODS
To assess social and ecological dynamics of the SMS, we
assembled multiple open access datasets including soybean trade
flows between countries, as well as country income and forest
cover attributes by country. We completed all data analyses in the
open source R statistical computing environment (R Core Team
2017). Data compilation was completed using the countrycode
package (Arel-Bundock 2014). We used the igraph (Csardi and
Nepusz 2006) and network (Butts 2008a) packages to construct
the network, and ggplot2 (Wickham 2009) and GGally (Schloerke
et al. 2016) to generate georeferenced network visualizations.
Important nodes, edges, and flow paths connecting subnetwork
groups were identified using the igraph (Csardi and Nepusz 2006)
and sna (Butts 2008b) packages. Temporal analyses were executed
with R packages networkDynamic (Butts et al. 2016) and tsna
(Bender-deMoll and Morris 2016), cross-scale dynamics were
assessed with the ergm package (Hunter et al. 2008), and the
MuMin package was used for model selection and model
averaging functions in the assessment of trade spillover effects
(Bartoń 2018).

Data preparation and network generation
We harmonized datasets to account for slight differences in
naming conventions and geopolitical changes over the study
period, identifying each country by its ISO 3166 standard alpha-2
code. For simplicity, and to maximize the consistency of the
historical record, we combined countries that have more recently
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split apart, and we did not separately consider territories or
provinces. For example, we considered Hong Kong and China as
one system for the full time series.

Global soybean trade data
The FAOSTAT trade database provides a consistent long-term
data source to represent flows in the SMS (Food and Agriculture
Organization of the United Nations 2016). We downloaded all
available annual soybean trade data in terms of both volume and
value (US$) from 1986 to 2013 (Department of Economic and
Social Affairs Statistics Division 2010, Food and Agriculture
Organization of the United Nations 2016). Soybean trade data
does not account for all global soybean production because
soybean produced and consumed domestically is not captured.
Following data harmonization, we retained soybean trade data
for 217 countries over the entire time series.

Deforestation and income data
To demonstrate the utility of network analysis for evaluating
multiple facets of the SMS, we integrated additional datasets
representing both social and ecological attributes for pantropical
countries participating in soybean trade. First, we incorporated
annual estimates of forest loss from a 30-m resolution satellite-
based forest loss dataset for 2000–2012 (Hansen et al. 2013). This
dataset was further processed by Austin et al. (2017) to summarize
the annual loss of forest with > 50% tree cover for each country
in the pantropics, considering each contiguous clearing in a given
year as a unique deforestation event. To represent socioeconomic
well-being in pantropical countries, we also included country
income categories (low, lower middle, upper middle, or high
income; The World Bank 2017). The full suite of data was
available for 100 pantropical countries participating in soybean
trade for the period 2000–2012 (Table A1.1).

Network representation
We represented the individual countries as the nodes in a directed
spatial network, based on the geographic centroid coordinates
(latitude/longitude) for each country. Edges between node pairs
were weighted by the value of soybean exports (US$) transferred
between each origin and destination country in each year from
1986 to 2013. For the subset of 100 pantropical countries with
available data, we also included as node attributes the estimates
of deforestation and income category by country for the period
2000–2012. Although the value of soybean traded, a function of
both volume and price, is not equivalent to production or land
use dedicated to soybean, it may serve as a useful proxy for these
attributes. For the pantropical countries that exported soybean
2000–2012, there was a significant association between export
value and production volume when data were log (base 10)
transformed (adj. r² = 0.58, p < 0.0001; Table A1.1).

Analysis
Once the network was created, we applied a set of quantitative
network analysis methods to address the following key questions
about the SMS.

Q: What are the most important sending and receiving systems
and key flow pathways?
Network analysis can assist in describing and quantifying the
complexity and structure of relationships in the SMS. Using trade
data from the most recent year (2013), we first identified the most
important sending systems (net exporters) and receiving systems

(net importers) by ranking country nodes in terms of their degree.
We also assessed the directionality and strength of edges
connecting nodes in terms of the value (US$) of soybean traded
between any two partners.  

In addition to characterizing dynamics of specific nodes and edges,
we examined the roles of key nodes in assortativity, or the patterns
of how nodes are connected to each other (Newman 2003). For
assortative networks, nodes with similar attributes, e.g., degree or
spatial location, preferentially connect to one another, as is often
observed in social networks. In contrast, in a disassortative
network, more isolated nodes are linked into the broader system
through highly connected hub nodes, as occurs in many
technological and biological networks (Newman 2003). The
assortativity coefficient is the Pearson correlation coefficient r;
where r > 0 indicates an assortative network, r < 0 indicates a
disassortative network, and r = 0 is an uncorrelated network
(Newman 2003). For the entire SMS in 2013, we computed
assortativity based on node degree.  

Subnetwork structure can be characterized in more detail by
identifying communities, components, and cliques. Numerous
detection algorithms are available, including hierarchical
clustering based on node similarity, and ranking partitions between
communities using measures such as modularity (Girvan and
Newman 2002, Fortunato 2010). Examining connected
components and cliques within a network in terms of their size
and membership of specific nodes can also provide insight into
metacoupled system structure (Fortunato 2010). A strongly
connected component is defined by the existence of directed flow
from node a to node b, and directed flow from node b to node a,
whereas a clique comprises a set of adjacent nodes that are
connected by at least one edge in either direction. We executed
multiple approaches to detect communities, including the
Newman-Girvan algorithm, which removes edges with high
betweenness centrality to separate communities (Girvan and
Newman 2002), a greedy algorithm that assesses partition quality
based on modularity (Clauset et al. 2004), and Louvain clustering,
which iterates node community assignment until total modularity
cannot be improved (Blondel et al. 2008). Both the greedy
modularity algorithm and Louvain clustering required that the
2013 trade network first be converted to an undirected network.
We also identified strongly connected components and cliques for
the SMS in 2013.

Q: How have key sending and receiving systems and flow pathways
changed over time?
We assessed the dynamics of relationships in the SMS over time
using a variety of metrics; for each year from 1986 to 2013 we
computed the density and connectedness of the entire network in
addition to tracking the degree of each node and the temporal edge
density of each node. We also calculated the duration of activity
for nodes and edges between node pairs. In addition, we evaluated
long-term community structure in the network, including all edges
from all time steps to identify cliques and components. Because of
the inconsistency of results from 2013, we did not execute the other
community detection algorithms for the complete time series.

Q: Have past trade partnerships had a positive feedback on future
trade partnerships?
We anticipated that countries with a higher number of trade
partners in early years would increase trade partnerships more
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rapidly than countries starting with fewer trade partners, a case
of positive feedback, in alignment with preferential attachment
of nodes in networks (Newman 2001, Lü and Zhou 2011). A
regression approach (e.g., Aknin et al. 2012) can be used to assess
the existence of positive or negative feedbacks, and to test
hypotheses regarding drivers. To examine feedbacks due to trade
partnerships over time, we plotted the number of trade partners
over time for each country that exported or imported soybean at
least four times during the study period. We created linear models
for trade for each of these countries relative to time and assessed
whether the slopes of the linear models were significantly positive.
We standardized the number of trade partners for each country
over time by dividing the number of senders or receivers a
particular country was connected to in a particular year by the
total number of senders or receivers active across the entire SMS
in that year.

Q: To what extent have cross-scale dynamics from country to
continent levels affected soybean trade patterns?
To examine the level of interaction across spatial scales in the
SMS, we fit exponential random graph models. This approach
quantifies the probability of a given network, among all possible
relationships between a given a set of nodes, and is conceptually
similar to a generalized linear model approach (Holland and
Leinhardt 1981, Morris et al. 2008). The ability of exponential
random graph models to handle dependence of edges may make
them better suited than gravity models for understanding
geographic networks (Autant-Bernard and Hazir 2013). We tested
whether a spatial hierarchy explained the observed soybean trade
relationships between countries by quantifying connectivity
within geographical regions, e.g., Eastern Africa, and continents,
which were contained as attributes for each node.

Q: What spillover effects have emerging soybean sending systems
had on the USA’s role as an established dominant sending system?
We tested the hypothesis that the USA was a spillover system,
affected by emerging soybean sending countries; we used a series
of simple and multiple regression models, in which emerging trade
relationships between China and soybean sending countries, e.g.,
Brazil, Argentina, Canada, etc., were predictors for USA
betweenness centrality. Our models were tests of hypotheses
raised in previous research, given that emerging markets may
affect established markets generally (International Monetary
Fund 2011, Cullen and Mansur 2017, Dong et al. 2018, Li et al.
2018, Zhu et al. 2018). We tested a suite of models containing
export data from South American and other countries that may
affect the importance of the USA as a soybean trade hub
(Gasparri et al. 2015, Sun et al. 2018). We particularly focused
models on Brazil, because differences in the cost and timing of
soybean production suggest that growth in Brazil soybean trade
negatively affects the U.S. soybean trade (Flaskerud 2003).
Moreover, the growth of soybean exports from middle-income
countries is a driver of global trade (Hanson 2012).  

Our goal was to explore whether the USA became a less important
country in the sending system, i.e., decreased betweenness,
because of increased competition from emerging markets. To
determine which model best explained USA betweenness, we
applied a model selection approach, using the size-corrected
Akaike Information Criterion (AICc) to rank and weight the set
of candidate models (Akaike 1974, Burnham and Anderson

2002). We then applied model averaging to determine model-
weighted parameter estimates for the covariates across models in
the candidate set, providing a general estimate of the importance
of covariates in multiple models (Burnham and Anderson 2004).

Q: To what extent have ecological impacts, e.g., deforestation,
occurred in tropical forests?
To demonstrate the use of network analysis to assess social-
ecological dynamics in the SMS, we quantified impacts on the
tropical forest biome due to global soybean trade. We examined
soybean flows in relation to deforestation detected from satellite
imagery for soybean trading countries in the pantropics from 2000
to 2012. Specifically, we used linear regression to examine the
relationship between the cumulative soybean export value and the
cumulative sum of detected deforestation, as well as year-to-year
differences in export value and deforested area for the 51
pantropical countries that exported soybean during the study
period. We also examined whether there were any significant
trends for the amount of deforestation occurring within distinct
clearing size classes identified by Austin et al. (2017) and whether
there were significant trends based on country income categories
(low, lower middle, upper middle, or high income) at the start of
the analysis period in 2000. Forest loss data for each country were
relativized by the estimated extent of forest at the start of the
study period and then log (base 10) transformed.

RESULTS

Key soybean sending and receiving systems and flow pathways in
2013
Because Brazil (sending system), China (receiving system), and
the USA (spillover system), have previously been identified as
important nodes representing distinct parts of the SMS, we
focused our results on these countries for demonstration
purposes. Sending systems were generally concentrated in the
western hemisphere in 2013, while receiving systems were located
in the eastern hemisphere (Fig. 2A, B). In 2013, Brazil, Argentina,
and the USA alone accounted for 80% of global soybean export
value, highlighting their importance as soybean sending systems
(Fig. 2A). China was the dominant soybean receiving system (Fig.
2B).  

We found that relationships between countries in the SMS were
weakly disassortative (Pearson r = -0.085) in 2013, indicating that
hub countries with high degree values connected peripheral
countries with low degree values. Brazil, China, and the USA
represent some of the key hub nodes because they were involved
in a disproportionate number of the total metacoupling
interactions in 2013 and most other years (Fig. 3). The USA was
involved in greater than average value soybean trades with 26
distinct partners, giving it the highest degree of these 3 countries
of interest, followed by Brazil with 19, while China was involved
in 6 partnerships where greater than average value of soybean
trade occurred.  

The existence of key flow pathways was revealed by identifying
subnetwork structure within the SMS in 2013, in the form of
communities, components, and cliques. Louvain clustering
assigned nodes to 6 communities, with the largest community
containing 66 nodes and a network modularity of 0.16, indicating
that the nodes within communities are slightly more related to
one another than would be expected if  they were randomly
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Fig. 2. Categories of key informants from different organizations and institutes.

distributed (Table A2.1). The greedy algorithm identified 7
distinct communities, with the largest community containing 100
nodes, and a network modularity of 0.15 (Table A2.2). Louvain
clustering and the greedy algorithm placed Brazil and China in
the same community, while the USA was assigned to a separate
community. The Newman-Girvan algorithm did not identify any
distinct communities. We also identified 39 distinct components
in 2013, with the largest connected component containing 3
countries. Clique assessment results considered 38 countries to be
isolated, with 1 clique containing the USA and China, and a
second clique consisting of the USA and Canada (Table A2.3,
Appendix 3).

Temporal dynamics
We identified a clear trend of increasingly close relationships in
the SMS from 1986 to 2013; a three-fold increase in network

connectedness was observed (Fig. 4A) along with a five-fold
increase in network density (Fig. 4B). Although the SMS has
become more tightly connected, it has been characterized by
volatile relationships. The set of countries engaged in soybean
trade has not been consistent year to year; on average, a given
node was active for 21.1% of the study period based on temporal
edge density of the network. Among all possible trade pairings
between soybean sending and receiving nodes, the likelihood that
trade occurred between any pair of nodes in a given year was very
low (temporal edge density = 0.012). Furthermore, the average
fraction of the total observed edges active at any time during the
study period was 0.001. A total of 2872 relationships existed in
the network from 1986 to 2013, yet just 1252 relationships (~52%)
lasted for more than two years, 555 ties (< 20%) lasted at least 10
years, and only 47 (< 2%) lasted for the duration of the study
period.
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Fig. 3. Perceived causes of salinity increase by different categories of respondents.
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Fig. 4. Coastal systems most affected by salinity increase in
southwest region.

Despite the low probability of year-to-year trade activity across
all nodes in the SMS, some nodes were extremely active. Out of
a total of 2872 soybean flows transferred over the study period,
Brazil was involved in 1078 (37.5%), China featured in 1396
(48.6%), and the USA was involved in 2077 (72.3%). Although
most countries did not have many long-term partnerships (Fig.
5A), those with a higher number of trading partners also tended
to have more durable partnerships (Fig. 5B) as was the case for
Brazil, China, and the USA. From 1986 to 2013, the majority of
countries in the SMS were receivers, while only a few countries
were responsible for sending the majority of soybean transferred
to destination countries (Fig. 5C). Most prominent sending
countries also received soybean.  

Many key flow pathways were identified connecting subnetworks
within the SMS when cliques across all years of data were
considered. Though most of the 165 unique cliques detected had
very few members, three cliques each contained six nodes (Table
A2.4). Unsurprisingly, Brazil, China, and the USA frequently
occurred in cliques. Brazil appeared in a total of five cliques (Table
A2.4) with five distinct comembers, sharing membership in three
cliques with Argentina (Appendix 4). China occurred in 11 cliques
(Appendix 4) with 13 distinct comembers, led by the USA, which
occurred in five cliques with China (Appendix 4). The USA was
a part of 17 different cliques (Table A2.4), co-occurring with 20
other countries, most notably sharing five cliques with Canada
and China, respectively (Appendix 4).

Positive feedbacks due to soybean trade relationships
We found evidence of a positive feedback with respect to the
number of trading partners for a given country in the SMS over
time, providing some support for preferential attachment of

nodes. The slopes of linear models for raw counts of trade
partners by country were significantly positive for China, Brazil,
and USA at the α = 0.05 level (Table 1). Of the other countries
that sent or received soybean for at least four years and had
significant results, regression coefficients for the slope were
positive for all but one of the 68 senders, and all but 8 of the 122
receivers (Appendix 5). However, when we converted counts to a
proportion of total number of senders or receivers per year, the
change over time was significantly negative for Brazil and USA,
and nonsignificant for China. Slopes for linear models of trading
partners as a proportion were negative for 17 of the 58 sending
countries, and 45 of the 114 receiving countries. This suggests that
the number of trade partners increased for all countries, not only
those that began the time period with greater numbers of trade
partners.

Fig. 5. Coastal communities most affected by salinity increase.

Cross-scale dynamics
Analysis of the soybean trade network with exponential random
graph models indicated that the metacoupling relationships
observed could not be explained by regional (p = 0.24) or
continental groupings (p = 0.20). Countries were not more likely
to trade with their geographic neighbors in the same region or
continent, but rather commonly traded outside of these
geographical boundaries. Aggregation to regional and
continental scales produced similar flow patterns to that observed
when the network relationships were assessed between individual
countries (Fig. 3). All regions and all continents in the SMS were
both sending and receiving systems. Evaluating whether a node
country, region, or continent was a net sender or receiver of
soybean provided a way to identify the distribution of important
sending and receiving systems at multiple scales.
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Table 1. Linear regressions of trade partnerships for key countries in terms of raw counts of sending (exporting) and receiving (importing)
partners and proportions of total trade partners per year. The analysis was limited to countries that traded at least four times with
another country for the period 1986–2013.
 

Country Counts Proportions

Slope
Coefficient

Slope
p-value

Adjusted
Rsq

Slope
Coefficient

Slope
p-value

Adjusted
Rsq

Mean
proportion
of trade
partners

Number of
trade years

Senders USA 0.11 28 0.7362 0.000 0.79 -0.0057 0.000 0.82
Brazil 0.06 28 0.0361 0.022 0.15 -0.0014 0.000 0.57
China 0.06 28 0.3049 0.000 0.73 -0.0004 0.184 0.03
Mean 0.01 19 0.3349 0.007 0.44 0.0000 0.006 0.40

Std Dev 0.02 8 0.4469 0.013 0.24 0.0010 0.010 0.20
Receivers USA 0.03 28 0.7646 0.000 0.89 -0.0004 0.002 0.30

China 0.02 28 0.1869 0.000 0.57 0.0000 0.823 -0.04
Brazil 0.01 28 0.0747 0.000 0.46 -0.0003 0.000 0.63
Mean 0.01 18 0.3524 0.006 0.46 0.0000 0.008 0.34

Std Dev 0.01 8 0.4473 0.011 0.25 0.0003 0.013 0.18

Economic spillovers among soybean sending countries
Our model selection exercise indicated that major soybean
sending countries in the southern hemisphere influenced the
betweenness of the USA in the SMS (Table 2). The single best
model to explain USA betweenness included the proportional
value of all soybean sent to China from South American countries
(Brazil, Argentina, Uruguay, and Paraguay), with an AICc weight
(wi) of 0.53 (adj. r² = 0.65, p < 0.01). Other models that performed
well included the proportional value of soybean sent to China
from Brazil as a covariate, most notably those models that
included soybean sent from Brazil, Argentina, and South Africa
(wi = 0.23, adj. r² = 0.67, p < 0.01) and Brazil and Argentina (wi 
= 0.14, adj. r² = 0.64, p < 0.01). Poorly performing models (ΔAICc
> 10, wi < 0.01) included the model considering soybean sent to
China from Argentina alone, and models including the
proportional value of soybean from the top 10 senders to China,
both collectively and for each of these sending countries as
individual covariates. The worst model, as ranked by AICc, was
the full model that included all covariates; this model ranked
worse than even the intercept-only model.  

Model averaging indicated that South American exports of
soybean to China positively influenced USA betweenness, as
measured by model averaged regression coefficients of the value
of soybean sent to China (Table 3). The sum of all South American
countries that sent soybean to China (Brazil, Argentina, Uruguay,
and Paraguay) had the strongest positive influence on USA
betweenness (β = 684.6, SE = 100.7, p < 0.01). The model averaged
parameter for models of soybean sent from Brazil to China was
430.1 (SE = 171.4, p = 0.01) and for soybean sent from Argentina
to China was 319.7 (SE = 134.5, p = 0.02). The sum of soybean
exports to China from all countries except USA, Brazil, and
Argentina indicated negative effects on USA betweenness, with a
model averaged parameter of -627.6 (SE = 115.3, p < 0.01);
however, model selection indicated that this was a low-ranked
model (wi = 0.01, adj. r² = 0.54, p < 0.01), so the sum of these
countries’ influence is minor. Model averaged parameters for
covariates representing proportional trade from each other
individual country included in other models had p > 0.05.

Ecological impacts on tropical forests 2000–2012
For pantropical countries that exported soybean from 2000 to
2012, we found that cumulative deforestation was significantly
associated with the cumulative value of soybean flows exported
by country, when both measures were relativized by forest cover
in 2000 (Fig. 6, Fig. A6.1–A6.3, r² = 0.35, p < 0.0001). Soybean
exports were a more important driver of deforestation over the
study period for countries lying closer to the regression line, e.g.,
Paraguay, whereas soybean exports alone did not adequately

Fig. 6. Interaction between society and coastal systems. (Here,
SLR denotes sea-level rise; DPSIR: driver-pressure-state-
impact-response; NAPA: National Adaptation Programme of
Action; and BCCSAP: Bangladesh Climate Change Strategy
and Action Plan).
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Table 2. Results of model selection indicate how the USA’s betweenness, as an established soybean sending system, was affected by the
value of soybean exported to China from other major sending countries. Models refers to the covariates for each of the models; K
indicates the number of parameters in each model; AICc is the size-corrected Akaike Information Criterion (AICc; Akaike 1973,
Burnham and Anderson 2002) that was used to rank models; ΔAICc is the difference between each model and the top model; w is the
AICc weight of each model.
 
Models K AICc ΔAICc w

Sum of Brazil, Argentina, Uruguay, Paraguay 3 432.25 0.00 0.53
Brazil + Argentina + South Africa 5 433.92 1.67 0.23
Brazil + Argentina 4 434.83 2.59 0.15
Brazil 3 437.38 5.14 0.04
Brazil + Argentina + Uruguay + Paraguay 6 437.45 5.20 0.04
Sum of all countries except Brazil, Argentina, and USA 3 439.86 7.62 0.01
Argentina 3 447.32 15.08 0.00
Brazil + Argentina + Uruguay + Paraguay + Canada + Russia + Australia + South Africa + India
+ Ethiopia (Top 10 exporters to China)

12 452.30 20.05 0.00

Sum of Brazil, Argentina, Uruguay, Paraguay, Canada, Russia, Australia, South Africa, India,
Ethiopia (Top 10 exporters to China)

3 455.91 23.67 0.00

Intercept only 2 460.09 27.85 0.00
Full model 15 467.94 35.69 0.00

explain observed deforestation over the study period for countries
further from the regression line, e.g., South Africa. Significant
trends were identified within the low income (r² = 0.42, p = 0.001),
lower-middle (r² = 0.65, p < 0.0001), and upper-middle income
countries (r² = 0.51, p = 0.03), but not for high-income countries.
No significant trends were identified for deforested clearing size
classes. The year-to-year difference in soybean export flows was
also a significant, but weak, predictor of the difference in
deforested area by country over the study period when both
measures were relativized by forest cover in 2000 (r² = 0.07, p =
0.007).

DISCUSSION
Using the SMS as an example, we demonstrated that network
analysis is a powerful and flexible tool for integrating
socioeconomic and ecological data to understand spatiotemporal
and cross-scale dynamics of metacoupled systems, including
flows, feedbacks, and spillover effects. Our integration of the
widely used tool of network analysis shows a path forward to
quantify the distinct dynamics of metacoupled systems.

Key sending and receiving systems and flow pathways
Network analysis provided a quantitative approach to identify
the key sending and receiving systems and flow pathways in the
SMS in 2013. The significant emphasis of previous studies on the
USA, China, and Brazil is justified given their involvement in a
large share of the flows in the SMS. We also found evidence that
groups of soybean trading countries were more connected to each
other than to the broader SMS. However, community
identification was not consistent across methods; for example,
modularity-based methods placed Brazil and China in a
community separate from the USA, while clique-based methods
placed the USA and China in a clique and considered Brazil to
be an isolated node. To improve confidence in tracking
hierarchical structure and key flow pathways in metacoupled
systems over time, future work could test the robustness of
partitions that define communities (e.g., Fortunato 2010).
Examining the attributes of community member nodes, and
network assortativity, in greater detail may also provide insight

into the basis of these communities and their role in metacoupled
systems. Metacoupled systems that incorporate social, economic
and ecological aspects may not fit the expectations of assortativity
in the literature for networks that focus on just one of these
dimensions (Newman 2003). Better understanding these aspects
of network structure may aid in understanding potential food
security risks because other researchers have found community
configuration affects supply chain stability (e.g., Acemoglu et al.
2012).  

Despite the east-west divide separating soybean senders and
receivers, many dominant senders also received soybean. These
transactions could be explained by specialized markets, i.e.,
organic soy milk and tofu for human consumption (Sun et al.
2015). Alternatively, this could be explained by changing marginal
costs for cultivation of soybean and transportation of the product
to reach consumers. For example, transport by rail or boat could
be a factor in trades depending on whether the ultimate
destination of the product is located in the USA interior as
opposed to the coasts (Clott et al. 2015). It may be informative
to further explore the relative importance of edges with distinct
attributes; for example, Zhu et al. (2014) found that bidirectional
edges were more important to diffusion within online social
networks than edges that only operated in one direction. Analysis
using soybean trade data provides partial understanding of
supply and demand factors, but a comprehensive assessment
would require actual soybean production and consumption data,
ideally at a subnational scale.

Temporal trends, feedbacks, and lag effects
Not only did the SMS become more connected over time, but we
also identified evidence of a positive feedback in the number of
intercoupling relationships by country over time. The increasingly
smaller set of dominant trade partnerships that has emerged has
implications for food security. Because very few countries
comprise the soybean sending system, policy changes or natural
disasters in these locations could cause significant disruptions in
the SMS. Brazil and the USA both cultivate large swaths of land
with monocultural GM varieties of soybean (HighQuest Partners
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Table 3. Model averaged regression coefficients and associated statistics derived from the model set in the model selection exercise to
assess spillover in the soybean metacoupled system. Covariate indicates covariates from models; Estimate indicates the model averaged
regression coefficients; Adjusted SE is the adjusted standard error (Burnham and Anderson 2002); z value is the test statistic for the
test; and p value is the p value associated with the test statistic.
 
Covariate Estimate Adjusted SE z value p value

(Intercept) 2543.7 99.1 25.68 0.00
Sum of Brazil, Argentina, Uruguay, and Paraguay 684.6 100.7 6.80 0.00
Brazil 430.1 171.4 2.51 0.01
Sum of Brazil, Argentina, Uruguay, Paraguay, Canada, Russia, Australia, South Africa,
India, Ethiopia

387.5 154.0 2.52 0.01

Argentina 319.7 134.5 2.38 0.02
South Africa 222.3 123.6 1.80 0.07
Paraguay 161.0 107.0 1.51 0.13
Ethiopia 20.1 124.9 0.16 0.87
India -45.9 112.5 0.41 0.68
Uruguay -47.5 116.3 0.41 0.68
Australia -68.8 163.4 0.42 0.67
Canada -70.7 204.2 0.35 0.73
Russia -111.1 133.3 0.83 0.40
Sum of all countries except USA, Brazil, and Argentina -627.6 115.3 5.44 0.00

and Soyatech 2011), which could be particularly vulnerable to
drought or disease.  

Social, economic, and political legacies may be at play in the trade
patterns observed; countries that traded with more partners had
longer lasting intercoupling relationships. On the other hand,
market perturbations due to changes in supply and demand may
explain some of the other metacoupling dynamics. An increase
in the value of exports from Brazil and the USA to China began
around 2000 and a steep increase was observed in 2007. In
addition to these demand-side factors, another explanation for
this spike may be a lag response to USA energy policies. Driven
by policies incentivizing corn production for biofuels, USA
soybean cultivation dropped beginning in 2004–2005, sending
both soybean and corn prices soaring (HighQuest Partners and
Soyatech 2011). There may have been a lag effect before this
impact was felt globally, after existing harvested supplies were
depleted. Lag effects may also complicate detection of
associations between soybean trade and deforestation. Soybean
cultivation is often associated with preceding deforestation for
grazing areas, which are later converted into soybean production
(Rudel et al. 2009, Graesser et al. 2015). When assessing how
deforestation is related to subsequent soybean export
observations, it may be important to account for the time required
to clear land and achieve a successful crop that can be brought to
market.

Cross-scale dynamics
Our analysis revealed extreme globalization in the SMS;
geography had no bearing on the relationships between countries,
but rather telecoupling interactions across long distances
dominated the trade patterns we observed. We also found that
soybean exports to spatially distant countries in the SMS were
associated with spatially concentrated tropical forest loss patterns,
which have been well quantified in previous work (Rudel et al.
2009), but not formally evaluated in a metacoupled systems
context. Our findings highlight a potential limitation of
neighborhood analyses commonly used in ecological studies,

where observations that are closer in space or time are expected
to be more closely related; metacoupled systems may not fit these
classic conceptualizations of natural systems, and offer exciting
opportunities to push theoretical boundaries. It is also worth
noting that most metacoupled systems research has assumed that
long-distance relationships are the most important to consider,
but has not quantified the relative importance of pericoupling
relationships between spatially nearby systems and telecoupling
interactions over distances, as we have demonstrated here using
exponential random graph models. We suggest that this would be
a useful step for exploratory data analysis in future studies.

Spillover effects
Previous network analysis-based studies have typically ignored
or omitted consideration of spillovers. Using a metacoupling
approach necessitates the need to consider this entirely new type
of connection, and it can provide novel cases not previously
explored using network analysis techniques. Although we
expected that the emergence of Brazil and Argentina as growing
major soybean senders to China would diminish the importance
of the USA as a key soybean trade hub, we were surprised to find
strong evidence that increases in exports from emerging South
American sending countries were associated with an increase with
USA betweenness. Increased demand for soybean over time may
explain these observations. Degree centrality increased for the
major soybean sending countries over the study period, which
was probably accommodated by strong and increasing demand
from China.  

We demonstrated proof of concept that a model selection
approach can be used to identify and quantify spillovers in
metacoupled systems as measured by changes in network analysis
metrics. Using the model selection framework allowed direct
comparison of the predictive value of potential drivers of network
metrics. Including additive terms in models enabled assessment
of cross-scale differences, and comparison across regions.
Moreover, model averaging permitted general conclusions about
the role of particular agents in metacoupled systems. Future
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studies could use community detection results to guide the choice
of candidate models. Additional influences on USA betweenness
could be considered by testing other models. For example,
demand for biofuel and other land uses could drive soybean
production patterns, which cannot be captured by soybean trade
data alone. We also expect that seasonal, or even finer temporal
resolution trade data would provide more evidence of spillover
effects due to competition between soybean sending countries,
rather than only annual data. However, we do not expect such
dynamics would be as clearly observed for soybean as for
perishable products such as fruits and vegetables. We examined
betweenness as one metric of the importance or influence of the
USA in the soybean market, but we also note that other network
indicators could also be analyzed in similar ways. Alternative
metrics could provide additional insight into network
relationships, or perhaps a composite index of multiple network
metrics could summarize these relationships. Future studies
should select among the many network metric options to target
those most relevant for specific research questions or hypotheses.

Social-ecological linkages
The ability to include social and ecological datasets as either node
or edge attributes, or as the links between nodes, makes network
analysis uniquely suited for assessing interactions between these
distinct dimensions of metacoupled systems. We demonstrated
that it is possible to quantify ecological impacts on tropical forests
because of the soybean metacoupled system. Our results
highlighting the linkage between soybean exports and
deforestation over the period 2000–2012 corroborate other studies
that have found that export-oriented agriculture is an important
driver of tropical deforestation (e.g., DeFries et al. 2010, Austin
et al. 2017). We expect that stronger associations would be found
if  subnational soybean production and trade data were available
to permit quantification of intracoupling in the soybean
metacoupled system. Additionally, deforestation patterns would
likely be better explained by assessing multiple commercial crops
to understand the suite of specific drivers operating in different
regions. For example, oil palm cultivation has emerged as a
prominent driver of deforestation, particularly in Southeast Asia,
driven by demand in distant locations (Fitzherbert et al. 2008).
Finally, other drivers unrelated to agriculture could also be
responsible for detected deforestation.  

Deforestation occurring in soybean exporting countries in the
pantropics could also be assessed as a spillover system. These
spillover effects in nearby and distant countries could be further
explored in future work. Incorporating either coarser regional, or
finer scale subnational soybean trade and deforestation data
would allow us to quantify ecological spillover effects due to the
SMS.

Quantitative analysis methods and data access for metacoupled
systems research
Our understanding of the SMS and other metacoupled systems
can be enhanced through quantitative approaches, including, but
not limited to network analysis. Transdisciplinary partnerships
among landscape ecologists, economists, climatologists,
sociologists, and other specialists can help develop a contextually
deep understanding of the diverse dimensions of metacoupled
systems. For example, gravity models have been widely used in
previous trade studies, in which the flows of goods are conditioned

on the level of economic activity at each location (e.g., Anderson
2011, Tamea et al. 2014, Fracasso 2014, Tuninetti et al. 2017).
In addition, we suggest that structural equation modelling
(Grace 2006, Kline 2011) and agent-based modeling methods
(Ford 2010) would be useful, particularly for quantifying effects
in spillover systems and analyzing nonlinear feedbacks. Agent-
based modeling involving process-based simulations could be
useful for evaluating the probability space for deforestation
outcomes given decisions and interactions at more regional and
local scales (An et al. 2005, Liu et al. 2015c). The recently
developed telecoupling toolbox (Tonini and Liu 2017) also offers
a promising option to assist researchers in linking diverse
datasets related to human and natural systems and conducting
spatially explicit analysis within a GIS environment.  

Future work on the SMS using other quantitative methods could
further test hypotheses against alternatives, and more explicitly
assess causality. For example, one hypothesis we suggest is that
regional and international trade agreements may explain the
important flow pathways connecting the cliques and
components that we identified. The availability of undeveloped
land, access to rail and boat transport networks, and access to
global markets could also be important considerations.
Although we did not examine cross-scale interactions in time,
we would expect that the market price of soybean, as well as
changing costs of production and the cost of alternatives to
soybean also influence the SMS.  

Despite the clear utility of network analysis for understanding
the SMS and other metacoupled systems, data scarcity and lack
of data access from centralized repositories continue to present
major challenges to implementing a full-scale quantitative
analysis of metacoupled systems. Additional assessments are
needed that bring together long-term social and ecological
patterns at multiple scales to examine interactions, feedbacks,
and spillover effects that may play out at different rates and across
hierarchical levels within metacoupled systems. Only rich
datasets will permit a robust test of the full potential of the
metacoupling framework to add predictive power over
traditional analysis approaches.

CONCLUSION
We have demonstrated using freely available datasets that
network analysis provides a flexible method to study
metacoupled systems, such as the SMS, by linking dynamic
socioeconomic changes, i.e., in soybean trade patterns, with
biophysical changes on the landscape, i.e., deforestation.
Network analysis can be applied more broadly in order to better
understand the nature of metacoupled systems globally. Given
appropriate data, network analysis techniques can assist in
identifying distributions of sending, receiving, and spillover
systems, tracking the structure and strength of connections
among systems across scales. Network analysis approaches can
be used to assess cross-scale dynamics, including identifying
feedbacks that may manifest as causes and effects at different
spatial and temporal scales. Such work may provide additional
insights into the processes responsible for forming, reinforcing,
or weakening connections in metacoupled systems. In turn,
metacoupled systems offer novel opportunities to test and
advance network theory for which expectations are typically
defined based on well-established characteristics of social or
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ecological networks individually, rather than simultaneously
considering these aspects. Using the metacoupling framework
also requires consideration of linkages not previously represented
in network analysis studies, particularly connections to spillover
systems. Using available quantitative tools and expertise across
various disciplines to quantify metacoupled systems can help us
to better understand what gives rise to metacouplings, how they
evolve in time and space, and what positive and negative effects
they may produce. Understanding these systems will be key to
developing appropriate policies to avoid and mitigate potentially
undesirable trade-offs, and to more sustainably manage global
resources for the future. 

Box 1:  
  

Network Analysis  

Network analysis, an application of graph theory (Urban and
Keitt 2001, Fortin et al. 2012), is a versatile approach that can be
used to describe how different components of social and
ecological systems are connected (Minor and Lookingbill 2010,
Penuel et al. 2012). A network consists of a set of nodes, which
are connected by edges representing the flows or interactions
among nodes (Urban and Keitt 2001, Fortin et al. 2012). Various
metrics can describe the degree to which the network facilitates
or impedes the flow of organisms and materials (Taylor et al.
1993) or connectivity among social agents (Borgatti et al. 2009).
Network analysis is flexible to inclusion of spatial and aspatial
data, continuous and nominal attributes, and both anthropogenic
and natural flows that may be of interest for complex metacoupled
systems. Here we define key network analysis terminology and
metrics used to analyze the soybean metacoupled system in this
study.  

Terminology (Wasserman and Faust 1994, Girvan and Newman
2002, Newman 2004)  

Adjacent: The condition when two different nodes (countries) are
connected by an edge (soybean trade occurs between them).  

Assortativity: Describes the pattern of how nodes in a network
are connected to each other. The assortativity coefficient is the
Pearson correlation coefficient r; where r > 0 indicates an
assortative network, r < 0 indicates a disassortative network, and
r = 0 is an uncorrelated network (Newman 2003).  

Assortative: Describes a network in which nodes with similar
attributes, e.g., degree or spatial location, preferentially connect
to one another.  

Betweenness: A metric summarizing the number of connected
pathways among nodes that go through a given node; greater
betweenness means that a node is more frequently a step in the
relationships that connect another two nodes.  

Clique: A subnetwork in which every two distinct nodes are
adjacent.  

Component: A subnetwork in which any two nodes are connected,
and which is connected to no additional nodes in the broader
network. An isolated node with no edges can also be considered
a component.  

Community: A tightly connected cluster of nodes within a
network.  

Connectedness: Here, we defined connectedness as the
Krackhardt connectedness score (Krackhardt 1994). This is
comprised of the fraction of all pairs of nodes where an
undirected path exists. The Krackhardt connectedness score
ranges from 0 to 1, with 1 being a completely connected network.  

Degree: The number of direct connections a node has.  

Density: The portion of potential connections in a network that
are actual connections.  

Destination: A node that is receiving (importing) soybean from
another node.  

Directed: Describes a network where the edges have a direction
associated with them.  

Disassortative: Describes a network in which more isolated nodes
are linked into the broader network through highly connected
hub nodes.  

Duration: Event counts or duration of connectivity between
nodes. Here, we measure duration in years.  

Edge: A connection or link between nodes. Here, edges are
soybean trade relationships.  

Modularity: The fraction of edges that fall within communities
minus the expected fraction if  edges were distributed at random.
The value of modularity lies in the range [−1/2,1]. It is positive if
the number of edges within communities exceeds the number
expected on the basis of chance.  

Network (Graph): A mathematical structure of nodes connected
by edges, used to understand pairwise relationships.  

Node: Entities connected by edges in a network, also called a
vertex. Here, nodes represent soybean sending (exporting) and
receiving (importing) countries.  

Origin: A node that is sending (exporting) soybean to another
node.  

Subnetwork: A subset of a network, also known as a
neighborhood or community. 

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/10460
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Appendix 1. Pantropical countries included in analysis of social-ecological linkages in the soybean metacoupled system 2000-2012.
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Appendix 5. Positive feedback in soybean trade relationships, as measured by regression of sending and receiving values relative to
time.
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Appendix 6. Supporting information for Figure 6, including social and ecological attributes of soybean trading countries in the
pantropics.
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