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Abstract. Concerns regarding the long-term viability of threatened and endangered plant species are increasingly
warranted given the potential impacts of climate change and habitat fragmentation on unstable and isolated popula-
tions. Orchidaceae is the largest and most diverse family of flowering plants, but it is currently facing unprecedented
risks of extinction. Despite substantial conservation emphasis on rare orchids, populations continue to decline. Spir-
anthes parksii (Navasota ladies’ tresses) is a federally and state-listed endangered terrestrial orchid endemic to central
Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative
importance of each factor and determine suitable habitat for future surveys and targeted conservation efforts. We ana-
lysed several geo-referenced variables describing climatic conditions and landscape features to identify potential factors
influencing the likelihood of occurrence of S. parksii using boosted regression trees. Our model classified 97 % of the cells
correctly with regard to species presence and absence, and indicated that probability of existence was correlated with
climatic conditions and landscape features. The most influential variables were mean annual precipitation, mean ele-
vation, mean annual minimum temperature and mean annual maximum temperature. The most likely suitable range for
S. parksii was the eastern portions of Leon and Madison Counties, the southern portion of Brazos County, a portion of
northern Grimes County and along the borders between Burleson and Washington Counties. Our model can assist in
the development of an integrated conservation strategy through: (i) focussing future survey and research efforts on
areas with a high likelihood of occurrence, (ii) aiding in selection of areas for conservation and restoration and (iii) framing
future research questions including those necessary for predicting responses to climate change. Our model could also
incorporate new information on S. parksii as it becomes available to improve prediction accuracy, and our methodology
could be adapted to develop distribution maps for other rare species of conservation concern.
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Introduction
Conservation biologists and natural resource managers
are growing increasingly concerned about the manner
in which climate change and accelerating habitat frag-
mentation may negatively affect the long-term viability
of threatened and endangered plant species (Wilcove
et al. 1998; Pitman and Jorgensen 2002; Brigham and
Swartz 2003). To successfully prevent their extirpation,
conservation efforts will require detailed studies of spe-
cies population biology and life-history dynamics, more
thorough assessments of the factors contributing to
rarity, sophisticated land management and restoration
strategies and the development of more robust predictive
models that better identify both high-priority conserva-
tion locations as well as areas potentially suitable for
plant reintroductions (e.g. Falk and Holsinger 1991;
Schemske et al. 1994; Maschinski and Haskins 2012).

Orchidaceae is the largest and most diverse family of
flowering plants, but it is currently facing unprecedented
risks of extinction (Cribb et al. 2003; Swarts and Dixon
2009). Orchidaceae consists of over 1000 genera and
most orchid genera contain one or more threatened or
endangered species (Cribb et al. 2003). The majority of
threatened orchid species are terrestrial orchids, despite
the small portion of the family represented by this life
form (IUCN 2001). In addition, many terrestrial orchids
are rare, with specialized habitat requirements, making
them particularly susceptible to habitat fragmentation
and modification (Wu and Smeins 2000; Pillon and
Chase 2007). Their vulnerability is exacerbated by patchy
distributions, specialized mutualisms and generally lim-
ited dispersal (Schemske et al. 1994; Coates et al. 2006;
Pillon and Chase 2007). Given the high extinction risk
to terrestrial orchids, they have been a major conserva-
tion concern for many environmental groups. They have
often been used as flagship species in conservation
initiatives because of their uniqueness and rarity and
additionally are often touted as important early warning
bioindicators for ecosystem health given their sensitivity
to environmental degradation (Cribb et al. 2003; Swarts
and Dixon 2009).

Despite substantial conservation emphasis on rare
orchids, populations continue to decline (Swarts and
Dixon 2009). This is in no small part due to difficulties in
designing integrated conservation plans for orchid pro-
tection (Whigham and Willems 2003; Swarts et al.
2007). Often, small patchily distributed orchid popula-
tions are difficult to detect without thorough surveys of
extensive areas, which are often not logistically feasible
(Wu and Smeins 2000; Gogol-Prokurat 2011). In addition,
many populations are spread across a network of private
or otherwise inaccessible land. Incomplete censuses of

populations limit the ability for conservation planners to
determine appropriate areas for protected habitat and
assisted migrations (Cuperus et al. 1999; Wan et al.
2014). Effective conservation planning requires the iden-
tification of areas of suitable habitat in order to facilitate
prioritization and appropriately identify land for the cre-
ation of preserves or easements and mitigation for
habitat modification or loss (Rodrı́guez et al. 2007; Gogol-
Prokurat 2011; Dudley and Bean 2012).

Species distribution models are invaluable tools for focus-
sing conservation efforts of species with incomplete distri-
bution records (Fleishman et al. 2002; Buse et al. 2007;
Fandohan et al. 2011; Gogol-Prokurat 2011). Species distri-
bution models comprise a suite of quantitative tools that
statistically relate species presence and absence data to
environmental predictor variables (Guisan and Thuiller
2005; Gogol-Prokurat 2011). They elucidate habitat require-
ments, aiding in the development of distribution predictions
essential to meeting endangered species conservation
objectives with limited site occupancy data and resources
for additional data collection (Guisan and Thuiller 2005;
Hirzel et al. 2006). They can be used to identify habitat suit-
able for conservation by providing maps of probabilities that
the species would occur in a given area (Ibisch et al. 2002;
Jiménez-Valverde and Lobo 2007), determine the effects of
land-use change on endangered species habitat (Rodrı́guez
et al. 2007) and explore the effect of global change on
endangered species distributions (Jiménez-Valverde and
Lobo 2007; Thuiller et al. 2008).

Studies involving species distribution modelling have
increased in recent years and several methods are currently
applied to address ecological issues (Elith and Leathwick
2009). These include statistical models such as generalized
linear models (Wang and Grant 2012) and generalized
additive models (Leathwick et al. 2006), machine-learning
models such as CLIMEX (Pattison and Mack 2008), GARP
(Stockman et al. 2006) and Maxent (Wilting et al. 2010),
as well as methods drawing on insights and techniques
from statistical and machine learning approaches such
as random forests (Prasad et al. 2006) and boosted regres-
sion trees (Chiou et al. 2013). Boosted regression trees are
a relatively new method compared to others. Boosted
regression trees have their origins within machine learning,
but subsequent developments in the statistical community
have led to a reinterpretation of boosted regression trees as
an advanced form of regression (Elith et al. 2008). However,
boosted regression trees differ fundamentally from sta-
tistical methods and machine-learning approaches such
as Maxent that produce a single ‘best’ model in that
boosted regression trees combine a large number of rela-
tively simple tree models adaptively to optimize predictive
power (Leathwick et al. 2006). Each of the individual
models consists of a simple classification or regression
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tree (a rule-based classifier) that partitions observations
into groups having similar values for the response variable
based on a series of binary rules constructed from the in-
dependent variables (Hastie et al. 2001). Boosted regres-
sion trees have been used to predict the distribution of a
threatened species, rabbitsfoot (Quadrula cylindrical), via
the inclusion of independent variables measured at mark-
edly different spatial scales (Hopkins 2009).

In this study, we analysed the relationships between
the occurrence of Spiranthes parksii, an endangered
terrestrial orchid, and several climatic and landscape vari-
ables deemed important to S. parksii distribution. Spir-
anthes parksii is a state and federally listed endangered
orchid, endemic to central Texas, USA. Its distribution
is limited to 13 counties and it appears to occupy a
restricted habitat within those counties, often observed
on the edges of upland drainages in small open grass/
shrub patches within post-oak savannah/woodland com-
munities (Wonkka et al. 2012). Spiranthes parksii popula-
tions are threatened by land conversion to agriculture
and lignite mines, urban development and woody en-
croachment by trees and understory shrubs into post-oak
savannahs (Wonkka et al. 2012). Like many terrestrial
orchids, S. parksii is a mycoheterotroph, requiring a
mycorrhizal symbiont for germination and seedling
development, remaining closely associated with the
fungi throughout its life cycle (Ariza 2013). This specia-
lized mutualism, along with a limited dispersal shadow,
and specialized habitat requirements leads to a patchy
distribution, making S. parksii detection difficult. In add-
ition, the counties in which the populations are located
consist largely of privately owned land, inaccessible to
surveyors. High rates of development in this region neces-
sitate effective prioritization of lands for mitigation
efforts. Given the conservation concerns and limited
availability of survey data for this species, we developed
a species distribution model to aid in effective conserva-
tion of S. parksii. In particular, we used boosted regression
trees to (i) identify potential factors influencing S. parksii
distribution, (ii) quantify the relative importance of each
factor and (iii) predict suitable S. parksii habitat. The
model developed herein will provide an adaptive quanti-
tative tool which can be used to facilitate future S. parksii
surveying, research and conservation efforts and, with
slight modification, should be applicable to other endan-
gered species with similarly limited ranges.

Methods

Study area and data sources

The study area covers several counties (Bastrop, Fayette,
Milam, Freestone, Leon, Madison, Grimes, Robertson and
Brazos) in central Texas, USA (Fig. 1). The area is largely

post-oak savannah intermixed with open grassland, crop-
land and urban and suburban development. The climate
is humid subtropical with an average minimum tempera-
ture of 14 8C, an average maximum temperature of 26 8C
and average annual precipitation of 105 cm bimodally
distributed with peaks in the fall and the spring.

We obtained geo-referenced data on (i) presence and
absence of S. parksii regularly sampled between 2004
and 2012 from the US Fish and Wildlife Service, Texas
Parks and Wildlife Department, Texas Department of
Transportation and the Texas A&M University team work-
ing under Drs Smeins and Rogers, (ii) average climatic
conditions in our study area from the PRISM Climate
group (2013) and (iii) landscape features including topo-
graphic characteristics derived from digital elevation
models (Gesch 2007), land cover (Fry et al. 2011), soil
characteristics (Soil Data Mart 2013) and geology (Stoeser
et al. 2013). Spiranthes parksii surveys were conduc-
ted yearly during peak flowering for the duration of the
study with systematic sampling across areas of known
S. parksii occupancy and additional areas deemed likely
to contain S. parksii due to similarity in habitat character-
istics to known areas of occupancy. Spiranthes parksii
locations were marked with GPS coordinates for future
observation.

Our geo-referenced data for S. parksii were primarily
comprised of occurrences. Pseudo-absences, or random
points in the study area where the focal species has not
been documented, are typically used as a surrogate for
absence records in studies with such data limitations.
However, there may be limited confidence in absence
at those points, depending on the sampling strategy
(Phillips et al. 2009). As a more definitive sample of ab-
sence points, we used locality records for an ecologically
similar congener, S. cernua. Given the similar ecology and
phenology of the two species (Ariza 2013), and the con-
servation status of S. parksii, S. parksii would have been
recorded if found during surveys for S. cernua. Thus, we
confidently use records for S. cernua that lack concurrent
records for S. parksii.

Data analysis

We selected 58 variables that have been suggested in the
literature as potential predictors of the presence of
S. parksii in central Texas (Wonkka et al. 2012; Krupnick
et al. 2013), including various climatic conditions and
landscape features [see Supporting Information].
We analysed relationships between the occurrence of
S. parksii and the potential explanatory variables by
aggregating the explanatory variable data associated
with S. parksii presence (106 cells) and absence (99
cells) into polygons representing a resolution of 800 ×
800 m cells, aligned with the climate data that we used,
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in central Texas. We then merged these data into a grid
of 37 427 800 × 800 m cells using ArcGIS 9.0 (ESRI
2009). The climate data included annual average max-
imum and minimum temperatures, and precipitation for
1981–2010 (PRISM Climate Group 2013). We derived
topographic characteristics for the 800 m grid cells
of analysis from the 30 m National Elevation Dataset
(Gesch 2007) using SAGA GIS version 2.1.0 (www.
sagagis.org). We also calculated the average soil water-
holding capacity, percentage of silt, sand and clay in
each soil type based on STATSGO soil data (Soil Data
Mart 2013) using R version 3.0.2 (R Core Team 2013). We
used spatial overlay tools in SAGA GIS version 2.1.0 and
Manifold GIS version 8.0.28 to aggregate the various
data layers [see Supporting Information] into a single
dataset for analyses.

We conducted our analysis using boosted regression
trees which combine decision trees and a boosting algo-
rithm with a form of logistic regression (Friedman 2002;
De’ath 2007; Elith et al. 2008). For boosted regression
trees, the probability (P) of S. parksii occurrence (y ¼ 1)
at a location with the potential explanatory variables
(X ) is given by P(y ¼ 1|X ) and is modelled via the
logit: logit P(y ¼ 1|X ) ¼ f (X ). We fitted our model in

R (R Development Core Team 2006 version 2.14.1) using
the gbm package version 1.5-7 (Ridgeway 2006) and
code provided by Elith et al. (2008). The optimal model
was determined following the recommendations of Elith
et al. (2008) by altering the learning rate and tree com-
plexity (the number of split nodes in a tree) until the pre-
dictive deviance was minimized without over-fitting, and
by limiting our choice of the final model to those that con-
tained at least 1000 trees (where each successive tree is
built for the prediction residuals of the preceding tree).
Once the optimal combination of learning rate and tree
complexity was found, model performance was evalu-
ated using a 10-fold cross-validation procedure with
resubstitution. For each cross-validation trial, 80 % of
the dataset was randomly selected for model fitting
and the excluded 20 % was used for testing. We calcu-
lated the response variance explained, the area under
the receiver operator characteristic curve (AUC), the over-
all accuracy, the omission error rate and the commission
error rate based on the aggregated CV results. We evalu-
ated the reliability and validity of our models as fair
(0.50 , AUC ≤ 0.75), good (0.75 , AUC ≤ 0.92), very
good (0.92 , AUC ≤ 0.97), or excellent (0.97 , AUC ≤
1.00) based on the value of AUC (Hosmer and Lemeshow

Figure 1. The study area and the current distribution (filled circles) of the endangered orchid S. parksii in central Texas, USA.
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2000). We then used the gbm library to derive the relative
influence of each potential explanatory variable in the
model and constructed partial dependence plots for the
most influential variables (Elith et al. 2008). Finally, we
used this optimal model to calculate probability of
S. parksii presence in each cell in central Texas and super-
imposed these probabilities of occupancy on a map of the
study area using ArcMap 9.0 (ESRI 2009).

Results
Analyses of 500 combinations of tree complexity (ranging
from 3 to 7) and learning rate (ranging from 0.001 to 0.01)
produced models with between 450 and 3900 trees
whose values of predictive deviance ranged from 0.582
to 0.624. The optimal model had a tree complexity of 5,
a learning rate of 0.003 and a total of 1200 trees. Model
predictive deviance was 0.582+0.0079 with 95.6 % of
the total response variance explained. The AUC score
was 0.940+0.016 (‘very good’ ability to discriminate
between species presence and absence) and the overall
accuracy was 91.7 %. The commission (false positive)
error rate was 6.8 % and the omission (false negative)
error rate was 9.8 %. Recursive feature elimination tests
showed that 45 variables could be removed from the
model before the resulting predictive deviance exceeded
the initial predictive deviance of the model with all
variables.

Thirteen variables were included in the final model
(Table 1), with variables associated with climatic

conditions and landscape features accounting for �53.5
and 46.5 %, respectively, of the contribution in the overall
model (Fig. 2). Examination of the relative contribution
of the predictor variables indicated that the top four
accounted for �70.95 % of the contribution in the overall
model. Of the four most influential model variables, three
were climatic conditions and one was a landscape fea-
ture. Mean annual precipitation, mean annual minimum
temperature and mean annual maximum temperature
were the first, third and fourth most influential variables,
contributing 26.93, 17.26 and 9.31 %, respectively. Mean
elevation was the second most important variable con-
tributing 17.45 %.

Partial dependence plots indicated that S. parksii occur-
rences were associated with climatic conditions charac-
terized by mean annual precipitation between 1050 and
1120 mm (Fig. 3A), mean annual minimum temperature
between 13.75 and 14.38 8C (Fig. 3C) and mean annual
maximum temperature between 26.00 and 26.25 8C
(Fig. 3D). Occurrences also were associated with land-
scape features characterized by (i) an altitude between
50 and 80 m (Fig. 3B), (ii) a slope ratio between 0.05
and 0.09 % (Fig. 3H), (iii) areas with ,20 % pasture
(Fig. 3E), 20–73 % of evergreen forest (Fig. 3I), 50–73 %
of deciduous forest (Fig. 3J), or ,5 % of developed open
space (Fig. 3K), (iv) soil with ,20 % clay (Fig. 3F) or 55–
94 % sand (Fig. 3L) and (v) geological formations in
which .75 % belonged to the Manning formation
(Fig. 3G) or in which .40 % belonged to the Wellborn
formation (Fig. 3M).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. Abbreviations, descriptions and descriptive statistics for the climatic conditions and landscape features included in the final model.

Variable Description Mean Minimum Maximum

Climatic conditions

pptCrop.13 Mean annual precipitation (mm × 100) 104 742 88 153 115 293

TMinCrop.13 Mean annual minimum temperature (C × 100) 1372 1255 1438

Mean annual maximum temperature (C × 100) 2598 2499 2671

Landscape features

DEM.Mean Mean elevation (m) 101.49 48.40 194.61

Pasture.Hay Proportion of pasture (%) 0.36 0 0.97

STATSGO_AvgClay Percentage of clay based on average of soil types (%) 28.27 5.04 51.91

TXEOm Percentage of Manning formation on average of geological formation (%) 0.29 0 1

Slope.Mean Mean slope (degree × 100) 0.03 0 0.09

Evergreen.Forest Proportion of evergreen forest (%) 0.05 0 0.73

Deciduous.Forest Proportion of deciduous forest (%) 0.14 0 0.73

Developed.Open.Space Percentage of developed open space (%) 0.04 0 0.61

STATSGO_AvgSand Percentage of sand based on average of soil types (%) 42.57 15.53 94.30

TXEOwb Percentage of Wellborn formation on average of geological formation (%) 0.06 0 1
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Our analyses suggest that potential habitat for S. parksii
in central Texas, considering its association with the vari-
ables mentioned in the previous paragraph, is most likely
to be (i) the eastern portions of Leon and Madison Coun-
ties, (ii) the southern portion of Brazos County, (iii) a por-
tion of northern Grimes County and (iv) along the borders
between Burleson and Washington Counties (Fig. 4).

Approximately 84, 5, 4, 3, 3 and 1 % of the cells fell within
the P ≤ 0.5, 0.5 , P ≤ 0.6, 0.6 , P ≤ 0.7, 0.7 , P ≤ 0.8,
0.8 , P ≤ 0.9 and 0.9 , P ≤ 1.0 estimated probability of
occurrence (P) categories, respectively.

Discussion
Plant distributions are limited by the availability of suitable
habitats (Aitken et al. 2007). For rare plants, especially
those with limited geographic ranges, narrow habitat
specificity can further limit distribution. While climate is
an important determinant of plant distribution at land-
scape levels (Pearson et al. 2004), soil properties and biotic
interactions determine habitat availability at local scales
(Raven 2002). Even for edaphic endemics, combinations
of variables predict distributions more accurately than
simple models driven entirely by soil-related parameters
(Arundel 2005). This is especially valid for predicting orchid
species distributions which are highly dependent on in-
teractions with pollinators and mycorrhizal symbionts
(Rasmussen 2002; Rasmussen and Rasmussen 2009).

Our model establishes the importance of both climatic
variables and landscape features to the distribution of
S. parksii. Spiranthes parksii is associated with the higher

Figure 3. Partial dependence plots for the 13 most influential variables included in the final model. The y-axis represents the logit scale used for
the indicated variable, hash marks at the top of the plot indicate the locations of the sample sites along the range of the variables.

Figure 2. Relative contributions (%) of the 13 most influential
variables included in the final model (see Table 1 for the description
of variables).
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end of the range of average annual precipitation for
the area (1050–1120 mm). This agrees with findings by
Ariza (2013) that showed higher soil moisture as a major
explanatory variable differentiating S. parksii occurrence
with the more abundant sympatric species S. cernua.
Spiranthes parksii is also found in areas with high minimum
(13.8–14.4 8C) and maximum (26–26.3 8C) mean annual
temperatures. This likely contributes to S. parksii distribu-
tion through unique life-history characteristics including
summer dormancy and potential early fall emergence of
rosettes (Wonkka et al. 2012). Summer dormant plants
existing below the soil as rhizomes can withstand high
peak temperatures, but with above-ground photosynthetic

vegetation being present in the winter, the plants favour
areas with higher winter temperatures to minimize poten-
tial frost damage.

Given the importance of climatic variables to S. parksii
distribution, climate change could have an extensive
impact on the availability of suitable S. parksii habitat
in the future. Climate change has been shown to cause
distribution shifts for many species of plants and can
increase the likelihood of local extinction as sessile plant
species are unable to disperse or adapt to a rapidly chan-
ging climate (Hoegh-Guldberg et al. 2008; Nicolè et al.
2011; Parmesan et al. 2013). This is further exacerbated
in highly fragmented areas, such as the range of S. parksii,

Figure 4. Estimated probabilities of occurrence of S. parksii in central Texas, USA.
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where human alteration can act as a barrier to dispersal
processes (Preston et al. 2008). Although there is consider-
able uncertainty in predictions of future temperatures and
precipitation for a particular region, projections averaged
across ensemble models suggest increased summer and
winter temperatures and decreased average annual precipi-
tation across the southern United States (Deser et al. 2012).
In addition, precipitation is expected to become more vari-
able, with more frequent drought events and more precipi-
tation occurring in fewer rainfall events (Coumou and
Rahmstorf 2012; Deser et al. 2012; Intergovernmental
Panel on Climate Change 2014). While warmer tempera-
tures could increase the habitat available to S. parksii,
there is likely an upper bound on temperatures that the
orchid can withstand. In addition, reduced precipitation
and greater frequency of drought could cause many cur-
rently suitable areas of habitat to become too dry to support
populations of the orchid given that our model shows
S. parksii to occur in the wetter portions of its range.

Several landscape features also proved important to
S. parksii distribution. Elevation and slope are also im-
portant to determining S. parksii occurrence. Although
slope and elevation are not mechanistic variables, they
often can be proxies for environmental variables, such
as soil properties and plant-available water, which can
drive plant distributions (Lassueur et al. 2006). Elevation,
derived from digital elevation models, is the most import-
ant landscape feature for predicting S. parksii distribution.
They are found at the low end of the elevation range for
the area (50–80 m). This is reflective of the specific habi-
tat preference for margins of drainages (Ariza 2013).
Similarly, S. parksii occur in areas with maximum slope
ratios for the area (0.05–0.09), which also reflects their
occurrence between flatter open areas and margins of
drainages.

Our model also showed soils and vegetation cover type
to be important for the distribution of S. parksii. This
is consistent with past studies that found high S. parksii
occurrence in the Manning and Wellborn geological
formations, suggesting that S. parksii might be an edaphic
endemic. This is also consistent with the life cycle depend-
ence on mycorrhizal fungi (Ariza 2013). Orchid distributions
are thought to be restricted largely by interactions with
pollinators and their mycorrhizal symbionts (Waterman
and Bidartondo 2008). For S. parksii, pollination is likely
less important (as evidenced by high levels of asexual
reproduction) than fungal mutualism (Ariza 2013). Fungi
tend to be patchily distributed across a landscape (Batty
et al. 2001), and their distributions are driven largely by
local mechanisms, especially soil properties such as soil
moisture and soil organic matter (Brundrett and Abbott
1994). Ariza (2013) found higher summer soil moisture,
lower pH, percent sand and abundance of soil organic

matter to be the most important distinguishing character-
istics between S. parksii and S. cernua occurrence. Our
model suggests that S. parksii soils usually are found in
areas with ,20 % clay and 55–94 % sand. The importance
of soil organic matter to S. parksii likely is related to both
the ability of organic matter to increase the water-holding
capacity of well-drained sandy soils, and also its import-
ance as a substrate for fungi. Orchids also tend to exhibit
narrow specificity with fungi (Waterman and Bidartondo
2008; Rasmussen and Rasmussen 2009). Therefore, it is
likely that S. parksii distribution closely tracks particular
fungal species. The distribution of those fungi is likely dri-
ven by specific soil inputs as well as soil properties, which
could explain the importance of vegetative cover (,20 %
pasture, 20–73 % evergreen, 50–73 % deciduous) to
S. parksii distribution. Fungi likely require leaf litter as a
substrate for decomposition. However, a thick layer of
leaf litter might inhibit germination of S. parksii seeds.
This is supported by the findings of Ariza (2013) that uni-
form leaf litter cover was an important determinant of
S. parksii occurrence. Soils have been found to be important
determinants of distribution for other orchids. Bowles et al.
(2005) found soil type to be the most important variable
determining Plantanthera leucophaea distribution and
Clark et al. (2004) determined climate, soils and vegetation
type to accurately predict distributions of Cryptostylis
hunteriana.

Areas with high estimated probabilities of S. parksii
occurrence are distributed patchily across the range.
There are some larger connected areas of high probability,
but many areas with high likelihood of occurrence are
punctuated with lower likelihood patches. Plants with
limited dispersal shadows are highly susceptible to local
extinctions due to stochastic events in fragmented
habitats (Bourg et al. 2005). The distribution map gener-
ated with our model suggests fragmented habitat for
S. parksii, which has limited dispersal due to tiny seeds
and the necessity for mycorrhizal associations for germin-
ation. Many seedlings are found in close proximity to adult
plants (Ariza 2013). Patchy distributions often are asso-
ciated with limited habitat availability (Swarts and Dixon
2009). However, if there is little chance for long distance
dispersal and patchily distributed areas of suitable habitat
(Hurtt and Pacala 1995), movement into unoccupied areas
of suitable habitat could be restricted, posing problems for
species with high frequencies of local extinctions (Primack
and Miao 1992). This is especially significant in areas that
are highly fragmented by development and agriculture
such as the central Texas range of S. parksii. Additionally,
distribution shifts necessary for species continuation in
the face of climate change require areas of suitable habitat
be attainable for future recruitment and persistence (Carey
and Brown 1994). Existence of such sites becomes
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increasingly less likely with high habitat specificity, limited
dispersal distances and fragmented habitat. Our model
possesses potential utility for understanding S. parksii
meta-population dynamics more thoroughly to determine
the level of threat posed to species viability in the face of
increased landscape fragmentation.

The model developed in this study has potential utility
beyond the scope of this work. It can be adapted
to incorporate new information and data as they be-
come available. Model accuracy increases with increased
amount and accuracy of presence and absence data and
can be updated to include new information to further re-
fine distribution predictions (Elith and Leathwick 2009).
Additionally, modelling multiple scales could increase
the accuracy of prediction. Ecological processes function
at different scales (Turner 1989; Levin 1992). Our model
explores landscape level scales that drive distribution,
but refining the model resolution could yield important
information regarding distribution at a finer scale (i.e.
within a high probability patch). Fine scale mechanisms
often regulate the distribution of rare plants with specia-
lized habitat requirements (Menges et al. 1999). For
instance, Diez and Pulliam (2007) found that distance
from parent was important to germination at the local
scale, while soil characteristics were more predictive of
germination at larger scales for Goodyera pubescencs.
One opportunity for improvement of the model is to
incorporate data related to disturbance and biotic inter-
actions (e.g. distribution of pollinators or fungal associ-
ates, fire or flooding effects on habitat quality) in order
to reflect the potential for non-equilibrium system func-
tioning (Schröder and Seppelt 2006). This could prove
especially important for species such as rare orchids
that have specific biotic interactions (Ettema and Wardle
2002) and tend to respond to specific disturbance regimes
(Clark et al. 2004). Models incorporating landscape changes
and mechanistic drivers can better capture fluctuations in
habitat suitability over time (Kearney et al. 2008). This
could increase the accuracy of distribution predictions in
systems where habitat quality fluctuates in response to
non-equilibrium processes (Elith and Leathwick 2009).

Conclusions
A suite of climatic variables and landscape features can be
used to predict the distribution of the endangered terres-
trial orchid, S. parksii which is endemic to central Texas.
Many of these variables are related to soil resources
which potentially influence the distribution of the mycor-
rhizal fungi the orchid depends on for germination and life-
time nutrient acquisition (Rasmussen and Rasmussen
2007; Ariza 2013). The species’ potential habitat is patchily
distributed as a result of this dependence on soil resources

and specific habitat requirements (Batty et al. 2001).
Narrow habitat specificity combined with potential disper-
sal limitations necessitates an integrated conservation
approach that includes research to determine basic eco-
logical and biological processes important to S. parksii
population viability, habitat management and conserva-
tion and an understanding of the effects of fragmentation
and habitat degradation on dispersal of S. parksii into suit-
able habitat (Swarts and Dixon 2009). Species distribution
models can assist in the development of an integrated con-
servation strategy (Kiesecker et al. 2010). They can help to
fill knowledge gaps resulting from limited resources for
research. Similarly, they can help focus future survey and
research efforts on areas with a high likelihood of occur-
rence (Parris 2002; Guisan et al. 2006). Species distribution
models also can be used to select areas for conservation
offsets or easements (Gibbons and Lindenmayer 2007;
Kumar and Stohlgren 2009), explore alternate manage-
ment scenarios (Guisan et al. 2013), frame research
questions (Aitken et al. 2007), explore issues related to
meta-population dynamics (Bourg et al. 2005) and predict
potential responses to climate change (Carey and Brown
1994). The species distribution model developed through
this research is adaptive. It can incorporate new informa-
tion as it becomes available to improve accuracy and reso-
lution of our analyses. Our methodology could also be
employed to develop distribution maps for other rare spe-
cies of conservation concern.
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